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Abstract

Purpose – To study the effects of velocity correction schemes for a temperature transforming model
(TTM) for convection controlled solid-liquid phase-change problem.

Design/methodology/approach – The effects of three different solid velocity correction schemes,
the ramped switch-off method (RSOM), the ramped source term method (RSTM) and the variable
viscosity method (VVM), on a TTM for numerical simulation of convection controlled solid-liquid
phase-change problems are investigated in this paper. The comparison is accomplished by analyzing
numerical simulation and experimental results of a convection/diffusion phase-change problem in a
rectangular cavity. Model consistency of the discretized TTM is also examined in this paper. The
simulation results using RSOM, RSTM and VVM in TTM are compared with experimental results.

Findings – In order to efficiently use the discretized TTM model and obtain convergent and
reasonable results, a grid size must be chosen with a suitable time step (which should not be too small).
Applications of RSOM and RSTM-TTM yield identical results which are more accurate than VVM.

Originality/value – This paper provides generalized guidelines about the solid velocity correction
scheme and criteria for selection of time step/grid size for the convection controlled phase change
problem.
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Nomenclature
a ¼ coefficient in equation (16)
b ¼ term in equation (16)
c ¼ specific heat (J/(kg K))
c 0 ¼ coefficient in equation (4) (J/(kg K))
C ¼ c 0/cl

Csl ¼ cs/cl

d ¼ coefficient in velocity correction
equations (17) and (18)

g ¼ gravitational acceleration, 9.8 m/s2

H ¼ height of the vertical wall (m)
k ¼ thermal conductivity (W/(m K))

K ¼ dimensionless thermal
conductivity, k/kl

Ksl ¼ ks/kl

L ¼ latent heat (J/kg)
p ¼ pressure (N/m2)
P ¼ dimensionless pressure,

ð pþ r1gyÞH
2=rn 2

l :
P * ¼ initially guessed dimensionless

pressure
P0 ¼ pressure correction
Pr ¼ Prandtl number, n=al:
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Prl ¼ Prandtl number of liquid, nl=al:
Prm ¼ Prandtl number of mushy phase,

Prl þ ðPrl 2 PrsÞ �
ðT 2 dT*Þ=ð2dT*Þ:

Ra ¼ Raleigh number, gbH3

ðT0
h 2 T0

c Þ=nlal:
S 0 ¼ term in B
S ¼ S 0=clðT

0
h 2 T0

c Þ:
Sc ¼ linearized source term in

equation (19)
Sp ¼ linearized source term in

equation (19)
Ste ¼ Stefan number, clðT

0
h 2 T0

c Þ=L:
T ¼ dimensionless temperature,

ðT 0 2 T0
mÞ=ðT

0
h 2 T0

c Þ:
Ti ¼ dimensionless initial temperature
T 0 ¼ temperature, K
T * ¼ scaled temperature, T 0 2 T0

m; K
T0

c ¼ cold surface temperature, K
T0

m ¼ melting (or freezing) temperature,K
T0

h ¼ hot surface temperature, K
T ¼ time, s
u, v ¼ velocities, m/s
U, V ¼ dimensionless velocities,

uH=nl; vH=nl:
U *, V * ¼ dimensionless velocities computed

from P *

X, Y ¼ dimensionless coordinate
directions, x=H ; y=H :

x, y ¼ coordinate, m

Greek symbols
a ¼ thermal diffusivity (m2/s)
b ¼ coefficient of volumetric thermal

expansion, 1/K

2dT 0 ¼ phase-change temperature range,
T0

l 2 T0
s :

dT * ¼ dT 0=ðT0
h 2 T0

c Þ:
1l ¼ the ratio of the volume of liquid to

the total volume of the
computational domain

f ¼ general dependent variable,
equation (16)

r ¼ density (kg/m3),
r ¼ r1ð1 2 bðT 0 2 T0

mÞÞ:
r1 ¼ reference density (kg/m3)
m ¼ dynamic viscosity

(kg/(m 2 s))
n ¼ kinematic viscosity (m2/s)
t ¼ dimensionless time, nlt=H2:

Subscripts
E ¼ east neighbor of grid P
e ¼ control-volume face between

P and E
i ¼ initial value
l ¼ liquid phase
m ¼ mushy phase
n ¼ control-volume face between

P and N
N ¼ north neighbor of grid P
nb ¼ neighbors of grid P
P ¼ grid point
s ¼ solid phase or control-volume face

between P and S
S ¼ south neighbor of grid P
w ¼ control-volume face between

P and W
W ¼ west neighbor of grid P

1. Introduction
Modeling and numerical simulation for solid-liquid phase-change problems has
become an active area in the last several decades (Viskanta, 1983; Yao and Prusa,
1989). Research in this area is motivated by new technology applications in energy
systems (Zhang and Faghri, 1996) as well as manufacturing, such as laser drilling
(Zhang and Faghri, 1999), laser welding (Mundra et al., 1996), and selective laser
sintering (Zhang et al., 2000). To develop an accurate and stable numerical simulation
method of the dynamic process of a solid-liquid phase change, we are above all facing
the following two challenges:

(1) Development of a reliable model for convection-controlled heat transfer
problems, which is important because the heat convection caused by fluid flow
usually dominates the heat transfer process in a liquid region in those solid
phase-change problems.
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(2) How to make that model suitable for phase-change problems including moving
melting/solidification fronts in the computed domain.

In the last-20 years a large number of numerical techniques have been developed,
which can be broadly divided into two groups (Voller, 1997): fixed grid schemes
(or weak numerical solutions) and deforming grid schemes (or strong numerical
solutions). Fixed grid schemes have a much simpler mathematical structure than
deforming grid scheme yet are reasonably accurate and fast (Morgan, 1981; Voller
et al., 1987; Cao and Faghri, 1990; Sasaguchi et al., 1996; Voller, 1997; Binet and
Lacroix, 2000). There are two widely used methods in the group of fixed grid
schemes: enthalpy method (Voller et al., 1987; Binet and Lacroix, 2000), and
temperature-based equivalent heat capacity methods (Morgan, 1981; Hsiao, 1984).
The enthalpy method can deal with both mushy and isothermal phase-change
problems but the temperature at a typical grid point may oscillate with time. The
temperature-based method, on the other hand, generates results without oscillations
but has difficulty handling cases where the phase-change temperature range is
small. To overcome these drawbacks, Cao and Faghri (1990) proposed an improved
temperature-based equivalent heat capacity method, the temperature transforming
model (TTM), in which the enthalpy-based energy equation is converted into a
nonlinear equation with a single dependent variable. The simulation results of the
TTM method shown by Cao and Faghri (1990) are accurate enough compared with
experimental results and it also features a simple structure and an efficient
simulation time. For these reasons the present authors chose the TTM method for
simulations on convection/diffusion phase-change problems.

Before applying this TTM method for phase-change problems we must determine
how to express the solid and liquid phases in the model. In a solid region the velocity of
phase change materials (PCM) should be set to zero. In a liquid region the velocity must
be solved from the corresponding momentum and continuity equations. Currently,
there are three widely used families of solid velocity correction schemes for this
purpose: they are the switch-off method (SOM) (Voller et al., 1987; Yang and Tao, 1992),
the variable viscosity method (VVM) (Gartling, 1980; Voller et al., 1987; Cao and
Faghri, 1990), and the source term method (STM) (Voller et al., 1987; Brent et al., 1988;
Voller, 1997; Yang and Tao, 1992; Sasaguchi et al., 1996; Binet and Lacroix, 2000). Note
that in Voller et al. (1987) and Brent et al.’s (1988) work, a special kind of STM, Darcy
STM, was developed in the context of enthalpy method. This Darcy STM is essentially
similar to the ramped source term method (RSTM) method for TTM, on which we will
discuss in detail in the following sections. Voller et al. (1987) compared the Darcy STM,
VVM and SOM and concluded that the Darcy source-term method is more stable than
the other two.

Since Voller et al.’s (1987) comparison was based on a model using only
enthalpy-method, and the Darcy STM in TTM is not applicable, it is necessary to
validate and compare SOM, STM and VVM on a TTM model as it used in
convection/diffusion phase-change problems. The objectives of this paper are to
validate two modified schemes, the ramped switch-off method (RSOM) and the RSTM,
and compare them with VVM. The comparative results (in convergence, accuracy
and simulation speed) by running a series of numerical simulation tests for
a two-dimensional example will be presented recommendations on how to choose an
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appropriate combinations of grid sizes and time step for numerical simulation of
convection/diffusion phase-change problems will also be made.

2. Temperature transforming model for convection controlled solid-liquid
phase-change problems
The TTM was proposed by Cao and Faghri (1990) for solving typical PCM
phase-change problems including the effect of natural convection. This model is based
on the following assumptions:

. the PCM is pure, homogeneous and with a mushy phase change;

. the liquid phase of the PCM is considered a Newtonian, incompressible fluid;

. radiation effects and viscous dissipation are neglected; and

. the change of the values of these thermophysical properties in the mushy region
is linear.

In TTM, general continuity and momentum equations for fluid problems are used,
while its energy equation is different from the enthalpy-based energy equations
applied in traditional temperature-based equivalent heat capacity methods. The
governing equations of TTM expressed in a two-dimensional Cartesian coordinate
system are as follows ( y-axis is the vertical axis).

Continuity equation:

›u

›x
þ

›v

›y
¼ 0 ð1Þ

Momentum equations in x and y directions, respectively:

›ðruÞ

›t
þ

›ðru 2Þ

›x
þ

›ðruvÞ

›y
¼ 2

›p

›x
þ rgx þ

›

›x
m
›u

›x

� �
þ

›

›y
m
›u

›y

� �
ð2Þ

›ðrvÞ

›t
þ

›ðruvÞ

›x
þ

›ðrv2Þ

›y
¼ 2

›p

›y
þ rgy þ

›

›x
m
›v

›x

� �
þ

›

›y
m
›v

›y

� �
ð3Þ

Energy equation (Cao and Faghri, 1990):

›ðrc0T*Þ

›t
þ

›ðruc 0T*Þ

›x
þ

›ðrvc 0T*Þ

›y
¼

›

›x
k
›T*

›x

� �
þ

›

›y
k
›T*

›y

� �

2
›ðrS 0Þ

›t
þ

›ðruS 0Þ

›x
þ

›ðrvS 0Þ

›y

� � ð4Þ

where T* ¼ T 0 2 T 0
m is scaled temperature. The coefficients c 0 and S 0 in equation (4)

are:
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c0ðT*Þ ¼

cs ðT* , 2dT 0Þ

cl þ cs

2
þ

L

2dT 0
ð2dT 0 # T* # dT 0Þ

cl ðT* . dT 0Þ

8>>>><
>>>>:

ð5Þ

S 0ðT*Þ ¼

csdT
0 ðT* , 2dT 0Þ

cl þ cs

2
dT 0 þ

L

2
ð2dT 0 # T* # dT 0Þ

csdT
0 þ L ðT* . dT 0Þ

8>>>><
>>>>:

ð6Þ

and the thermal conductivity is:

kðT*Þ ¼

ks ðT* , 2dT 0Þ

ks þ ðkl 2 ksÞ
T* þ dT 0

2dT 0
ð2dT 0 # T* # dT 0Þ

kl ðT* . dT 0Þ

8>>>><
>>>>:

ð7Þ

where T* , 2dT 0 corresponds to the solid phase, 2dT 0 # T* # dT 0 to the mushy
region, and T* . dT 0 to the liquid phase.

Introducing these following non-dimensional variables:

X ¼
x

H
; Y ¼

y

H
; U ¼ u

H

n l
; V ¼ v

H

n l
; t ¼

n lt

H 2
;T ¼

T 0 2 T 0
m

T 0
h 2 T 0

c

;

dT* ¼
dT 0

T 0
h 2 T 0

c

; C ¼
c0

cl
; S ¼

S 0

clðT
0
h 2 T 0

c Þ
;

K ¼
k

kl
; Ste ¼

cl T 0
h 2 T 0

c

� �
L

; Csl ¼
cs

cl
; Ksl ¼

ks

kl
; P ¼

H 2

rn2
l

ð pþ r1gyÞ

ð8Þ

Equations (1)-(7) can be non-dimensionalized as:

›U

›X
þ

›V

›Y
¼ 0 ð9Þ

›U

›t
þ

›ðU 2Þ

›X
þ

›ðUV Þ

›Y
¼ 2

›P

›X
þ

›

›X

Pr

Prl

›U

›X

� �
þ

›

›Y

Pr

Prl

›U

›Y

� �
ð10Þ

›V

›t
þ

›ðUV Þ

›X
þ

›ðV 2Þ

›Y
¼ 2

›P

›Y
þ

Ra

Prl
T þ

›

›X

Pr

Prl

›V

›X

� �
þ

›

›Y

Pr

Prl

›V

›Y

� �
ð11Þ
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›ðCTÞ

›t
þ

›ðUCTÞ

›X
þ

›ðVCTÞ

›Y
¼

›

›X

K

Prl

›T

›X

� �
þ

›

›Y

K

Prl

›T

›Y

� �

2
›S

›t
þ

›ðUSÞ

›X
þ

›ðVSÞ

›Y

� � ð12Þ

where

CðTÞ ¼

Csl ðT , 2dT*Þ

1

2
ð1 þ CslÞ þ

1

2Ste · dT*
ð2dT* # T # dT*Þ

1 ðT . dT*Þ

8>>>><
>>>>:

ð13Þ

SðTÞ ¼

CsldT* ðT , 2dT*Þ

1
2 ð1 þ CslÞdT* þ

1

2Ste
ð2dT* # T # dT*Þ

CsldT* þ
1

Ste
ðT . dT*Þ

8>>>>><
>>>>>:

ð14Þ

and

KðTÞ ¼

Ksl ðT , 2dT*Þ

Ksl þ ð1 2 KslÞ
T þ dT*

2dT*
ð2dT* # T # dTÞ

1 ðT . dT*Þ

8>>>><
>>>>:

ð15Þ

3. Numerical solution procedure
3.1 Discretization of governing equations
The two-dimensional governing equations are discretized by applying a finite volume
method (Pantankar, 1980), in which conservation laws are applied over finite-sized
control volumes around grid points and the governing equations are then integrated
over the volume. Staggered grid arrangement (Pantankar, 1980) is used in the
discretization of the computational domain in momentum equations. A power law
scheme (Pantankar, 1980) is used to discretize convection/diffusion terms in
momentum and energy equations. The main algebraic equation resulting from this
control volume approach is in the form of:

aPf P ¼
X

anbfnb þ b ð16Þ

where fP represents the value of variable f (U, V or T) at the grid point P, fnb are the
values of the variable at P’s neighbor grid points, and aP, anb and b are corresponding
coefficients and terms derived from original governing equations. The numerical
simulation is accomplished by using Simple algorithm (Pantankar, 1980). Note that the
velocity-correction equations for corrected U and V in the algorithm are:
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Ue ¼ U*
e þ deðP

0
P 2 P 0

EÞ ð17Þ

Vn ¼ V *
n þ dnðP

0
P 2 P 0

N Þ ð18Þ

where according to the staggered grid arrangement e and n, respectively, represent the
control-volume faces between grid P and its east neighbor E and grid P and its north
neighbor N. The source term S in governing equations is linearized in the form

S ¼ SC þ SPfP ð19Þ

in a control volume, and by discretization SP and SC are then, respectively, included in
aP and b in equation (16).

3.2 Three alternative solid velocity correction schemes for phase-change problems
Having chosen the TTM model and Simple algorithm for numerical simulations, we now
turn our attention to developing a reliable solid velocity correction scheme to ensure that
velocities in the solid region will be kept equal to zero during simulations of
phase-change problems. In this subsection, three commonly used families of solid
velocity correction schemes for phase-change problems, i.e. SOM, STM and VVM, as
well as two modified versions of SOM and STM, i.e. RSOM and RSTM, will be discussed.

3.3 Switch-off method (SOM)/ramped switch-off method (RSOM)
The SOM is the most straightforward method (Morgan, 1981; Voller et al., 1987; Yang
and Tao, 1992). It divides the whole domain into a solid region (where T , 0) and a
liquid region (whereT $ 0), and then directly sets the velocitiesU andV in the solid area
to be zero by setting the coefficients aP in discretized U and V momentum equations
(in form of equation (16) wheref representsU orV) equal to a very large positive number
and the coefficients de and dn in theU andV velocity-correction equations, equations (17)
and (18), equal to very small positive numbers (Yang and Tao, 1992). For instance, in
Yang and Tao (1992), aP ¼ 1030 and de ¼ dn ¼ 10230: The small values of de and dn
guarantee that the values of U and V stay very small during the process of solving the
velocity-correction equations (17) and (18). The values of aP, de and dn in the liquid region
(where T $ 0) are directly calculated from Simple algorithm.

Although this (conventional) SOM method is commonly used in numerical
simulations of phase-change problems, our simulations show that if used together with
a TTM model for convection controlled solid-liquid phase-change problems, the SOM
will result in a serious inconsistency of the TTM model (see Section 4, point 3 for
detailed discussion about the inconsistency) and consequently cannot provide accurate
simulation results. In the example, a solid-liquid phase change with
convection/diffusion in a vertically positioned two-dimensional cavity case is
considered (Figure 1; Okada, 1984). TTM and Simple algorithm are applied for
numerical simulations. The boundary and initial conditions are Ti ¼ 0; and Tc ¼ 0
and Th ¼ 1 for t $ 0: The upper and lower boundaries of the cavity are insulated. To
conduct numerical simulations, the half dimensionless phase-change temperature is set
as dT* ¼ 0:01 and the initial conditions the temperature T(x, y; t) are set as:
Tðx; y; 0Þ ¼ Ti ¼ 20:01: The boundary conditions are Tð0; y; tÞ ¼ Th ¼ 1;
Tð1; y; tÞ ¼ Tc ¼ 20:01; and adiabatic conditions are applied at bottom and top
of the domain. Other parameters are set as follows: Ra ¼ 3:27 £ 105; Prl ¼ 56:2;
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Ste ¼ 0:045; Csl ¼ 1:0 and Ksl ¼ 1:0: During simulations the values of the
underrelaxation factors for U, V, T and P are, respectively, taken as 0.1, 0.1, 0.1 and
0.12.

The simulation results using SOM obtained by running the simulation to a
dimensionless time of t ¼ 100 are listed in Tables I-III, where 1l represents the ratio of
the volume of liquid to the total volume of the cavity. These results show that when
time step is smaller than ten, SOM will diverge and thus accurate simulation results

Dt (dimensionless time step) 20 10 5 1 0.5 0.1 0.01

SOM Convergence Yes Yes No No No No No
1l (percent) 53.266 60.603 – – – – –

STM Convergence Yes Yes No No No No No
1l (percent) 53.265 60.604 – – – – –

Table I.
Simulation results with

a grid size of 20 £ 20
(stopped when t ¼ 100)

Dt (dimensionless time step) 20 10 5 1 0.5 0.1 0.01

SOM Convergence Yes Yes No No No No No
1l (percent) 52.284 58.038 – – – – –

STM Convergence Yes Yes No No No No No
1l (percent) 52.285 58.038 – – – – –

Table II.
Simulation results with

a grid size of 40 £ 40
(stopped when t ¼ 100)

Dt (dimensionless time step) 20 10 5 1 0.5 0.1 0.01

SOM Convergence Yes Yes No No No No No
1l (percent) 49.778 55.122 – – – – –

STM Convergence Yes Yes No No No No No
1l (percent) 49.775 55.121 – – – – –

Table III.
Simulation results with

a grid size of 80 £ 80
(stopped when t ¼ 100)

Figure 1.
Melting in a vertical

two-dimensional cavity
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cannot be obtained. This is because TTM uses a mushy region to guarantee that the
temperature T is continuous in the whole computed domain, while in SOM, the values
of velocity variables U and V are discontinuous at the solid-liquid phase-change fronts,
which causes deterioration of the model and result in inconsistency. SOM must,
therefore, be modified before they can be implemented in TTM. Naturally, with the
mushy region assumption in TTM, a ramped SOM, RSOM, is worth trying to avoid the
discontinuity.

In RSOM, the whole domain is divided into three regions: solid region, mushy region
and liquid region. The values of aP, de and dn in the solid area (T # 2dT*) are set as
very large positive numbers (here choose aP ¼ 1030; de ¼ dn ¼ 10230), while in the
mushy region where 2dT* # T # dT*; the adjustments for aP, de and dn satisfy the
following linear relations:

aP ¼ aP i þ ðaP i 2 1030Þ
T 2 dT*

2dT*

de ¼
dei
aP

; dn ¼
dni
aP

where aPi, dei and dni are the values of these coefficients in the mushy region originally
computed by Simple algorithm. For the liquid area ðT $ dT*Þ; aP, de and dn are just
directly computed by the Simple algorithm.

Now that all values of variables U and V and their relative coefficients become
continuous in the whole computational domain in the RSOM, this scheme is expected to
perform better than SOM in numerical simulations based on the TTM model
(See Section 4 for simulation results and discussions).

3.4 Source term method (STM)/ramped source term method (RSTM)
The STM (Yang and Tao, 1992) is essentially also a kind of “switch-off” method. This
method normally sets the velocities U and V of an internal grid point in the solid region
(where T , 0) equal to zero by imposing the corresponding linearized source terms SC
equal to a very large positive number times the desired values of U or V (which are zero
here) and SP equal to a very large negative number. For instance, in Yang and Tao
(1992), Sc ¼ 1030fP ¼ 0 and SC ¼ 21030; where f represents U or V. The values
of SC and SP in liquid regions (where T $ 0) are directly calculated from Simple
algorithm.

Same as SOM, this STM also suffers from discontinuity at the front of phase change
and, therefore, is not suitable for simulations on phase-change problems based on TTM
(see Tables I-III as examples). Thus, similar to RSOM, a RSTM, should be introduced.
As mentioned before, in Voller et al. (1987) and Brent et al. (1988), a Darcy STM (with
linear or nonlinear settings) was developed for phase-change simulations in the context
of enthalpy method. It is indeed a kind of RSTM since it ramps the value of the switch
based on Darcy’s law. In our TTM model, the setting of (linear) RSTM is as following.

In the solid area ðT # 2dT*Þ; coefficients of source terms in momentum equations
are set as SC ¼ 0 and SP ¼ 21030: In the mushy region ð2dT* # T # dT*Þ:

SP ¼ SPi þ ðSPi þ 1030Þ
T 2 dT*

2dT*
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SC ¼ SCi þ ðSCi 2 0Þ
T 2 dT*

2dT*

where Spi and Sci are the values of Sp and Sc originally computed by Simple method,
and in the liquid area ðT $ dT*Þ; Simple method generates the corresponding Sp
and Sc.

3.5 Variable viscosity method (VVM)
The VVM was proposed by Gartling (1980) and also used in, for example, Cao and
Faghri (1990). It divides the computational domain into solid area, mushy region and
liquid region. The governing equations (9)-(12) are valid in the whole domain, and the
velocities U and V are computed by solving these equations with different Prandtl
numbers (which represent viscosity) in different regions. In our model, the Prandtl
number is set as Prs ¼ 56:2 £ 1030 in the solid region ðT # 2dT*Þ; Prl ¼ 56:2 in
the liquid region ðT $ dT*Þ; and Prm ¼ Prl þ ðPrl 2 PrsÞðT 2 dT*Þ=ð2dT*Þ in the
mushy region ð2dT* # T # dT*). The large Prandtl number in the solid area
guarantees zero velocities.

In the next section we will use the example from Okada (1984) to compare the
RSOM, RSTM and VVM to each other and experimental results to evaluate their effects
on the TTM model used in convection controlled solid-liquid phase-change problems.

4. Results and discussions
Okada’s (1984) case (Figure 1) is used here for comparison of effects of RSOM, RSTM
and VVM on a TTM model in convection controlled solid-liquid phase-change
problems. Tables IV-VI list the simulation results obtained by running the simulation
program until a dimensionless time t ¼ 100: Figures 2-4 show the positions of melting
fronts obtained by RSOM, RSTM and VVM compared with comparison with Okada’s
(1984) experimental results and Cao and Faghri’s (1990) simulation results when
t ¼ 39:9: Figures 5-7 show those positions at t ¼ 78:68: Note that in the tables
“convergence” only means that the simulation does not blow up to infinity during the
iterations. Strictly speaking, those results denoted by “ *” are also divergent since they
do not converge to the correct values.

From these results we can see the following.
Comparison between RSOM and RSTM. The numerical results obtained by using

RSOM and RSTM, including the convergence property, 1l; the positions of the melting
fronts during the simulation and number of iterations (the convergence speed), are
almost the same. Therefore, RSOM and RSTM can be regarded as equivalent for this
problem simulated by TTM. Since the essences of both RSOM and RSTM is to set
certain coefficients in the algebraic equations derived from the control volume
approach (i.e. aPfP ¼

P
anbfnb þ b) equal to very large numbers and then resulting in

the corresponding fP (here is U or V) being almost zero, it is not surprising that these
two schemes generated almost identical results.

Recall that in Voller et al. (1987), the conclusion was that the Darcy STM performs
better than a non-ramped SOM for simulations using enthalpy method. It is easy to
explain since a continuous RSTM is better than a discontinuous SOM. To develop a
RSOM scheme for enthalpy method and then compare it with Darcy STM will be
interesting.
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Table IV.
Simulation results with a
grid size of 20 £ 20
(stopped when t ¼ 100)
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Table V.
Simulation results with a

grid size of 40 £ 40
(stopped when t ¼ 100)

Solid velocity
correction

schemes

215



D
t

(d
im

en
si

on
le

ss
ti

m
e

st
ep

)
20

10
5

1
0.

5
0.

1
0.

05
0.

01
0.

00
5

0.
00

1
D
t/
D
X
D
Y

12
80

00
64

00
0

32
00

0
64

00
32

00
64

0
32

0
64

32
6.

4
R

S
O

M
C

on
v

er
g

en
ce

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

1
l

(p
er

ce
n

t)
47

.9
39

52
.7

71
56

.9
10

62
.2

32
62

.9
96

63
.7

87
63

.9
27

62
.0

97
53

.7
41

23
.7

79
a

N
u

m
b

er
of

it
er

at
io

n
s

28
,5

80
43

,7
51

69
,8

84
14

4,
20

7
18

5,
93

7
38

7,
26

0
51

4,
67

3
81

5,
87

1
85

3,
21

8
60

6,
34

2
R

S
T

M
C

on
v

er
g

en
ce

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

1
l

(p
er

ce
n

t)
47

.9
39

52
.7

71
56

.9
10

62
.2

32
62

.9
96

63
.7

87
63

.9
27

62
.0

44
53

.7
46

23
.7

79
a

N
u

m
b

er
of

it
er

at
io

n
s

28
,5

96
43

,7
80

69
,8

82
14

4,
09

5
18

5,
93

9
38

7,
21

8
51

4,
64

4
81

6,
15

8
85

3,
11

0
60

6,
12

8
V

V
M

C
on

v
er

g
en

ce
Y

es
Y

es
Y

es
Y

es
Y

es
N

o
Y

es
Y

es
N

o
N

o
1

l
(p

er
ce

n
t)

47
.3

40
52

.0
06

53
.9

66
61

.0
92

61
.8

26
–

62
.9

83
60

.3
48

–
–

N
u

m
b

er
of

it
er

at
io

n
s

28
,5

08
43

,2
20

68
,6

94
14

2,
13

8
18

3,
48

2
–

52
9,

29
4

78
3,

42
6

–
–

N
o
te
:

a
C

on
v

er
g

en
t

to
u

n
re

as
on

ab
le

re
su

lt
s

Table VI.
Simulation results with a
grid size of 80 £ 80
(stopped when t ¼ 100)
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Comparison between VVM and RSOM/RSTM. The 1l in the tables and the positions of
melting fronts shown in the figures indicate that the numerical results obtained by
VVM is slightly smaller than that obtained by RSOM and RSTM. On the other hand,
the number of iterations required for simulation based on VVM is a little bit less than
the number of iterations required for simulation based on RSOM or RSTM. In the

Figure 2.
Comparison of the

locations of the melting
fronts at t ¼ 39:9 (grid
size: 20 £ 20; time step

Dt ¼ 0:5)

Figure 3.
Comparison of the

locations of the melting
fronts at t ¼ 39:9 (grid
size: 40 £ 40; time step

Dt ¼ 0:1)
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figures the position of the melting fronts obtained by RSOM/RSTM are much closer to
the experimental results (Okada, 1984) than those results obtained by VVM. Thus we
conclude that the RSOM and RSTM scheme is more accurate than VVM and, therefore,
should be chosen as the solid velocity correction scheme for research in phase-change
problems if TTM is applied. Note that non-ramped SOM and STM described in Section

Figure 4.
Comparison of the
locations of the melting
fronts at t ¼ 39:9 (grid
size: 80 £ 80; time step
Dt ¼ 0:05)

Figure 5.
Comparison of the
locations of the melting
fronts at t ¼ 78:68 (grid
size: 20 £ 20; time step
Dt ¼ 0:5)
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3.2, however, are not acceptable in TTM simulations for convection controlled
phase-change problems as we have discussed in Section 3.2.

Consistency of discretized TTM. Model inconsistency exists in all three of these
schemes. In Tables IV-VI, it is clear that when the time step is too small compared with

Figure 6.
Comparison of the

locations of the melting
fronts at t ¼ 78:68 (grid

size: 40 £ 40; time step
Dt ¼ 0:1)

Figure 7.
Comparison of the

locations of the melting
fronts at t ¼ 78:68 (grid

size: 80 £ 80 time step
Dt ¼ 0:05)
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the grid size, the simulation results will either blow up to infinity or converge to an
unreasonable result, while with a comparatively large time step the simulation results
are acceptable. In Figures 8 and 9 RSOM is used as example and we find that when
time step is too small compared with the grid size (in Figure 8, Dt ¼ 0:001 with grid
size 40 £ 40; in Figure 9, Dt ¼ 0:01 with grid size 20 £ 20) the positions of the melting

Figure 8.
Comparison of the
locations of the melting
fronts at t ¼ 39:9 (RSOM,
grid size: 40 £ 40)

Figure 9.
Comparison of the
locations of the melting
fronts at t ¼ 78:68
(RSOM, grid size: 20 £ 20;
time step varies)
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fronts are much closer to the left boundary than they should be, and those fronts are
nearly perpendicular to x-axis. From those results, as well as unreasonably almost zero
velocity profiles U and V we see in the liquid region (located between the left boundary
and the melting front) during simulations in those cases, we conclude that once
Dt=DXDY is smaller than around 60 , 80; an area playing a role as “transient zone”,
the discretized TTM model obtained by the finite volume method tends to be incapable
of describing the convection effect during a heat transfer process. Even if the
simulation results exist, they are more and more similar to those from pure-conduction
cases when Dt=DXDY goes to zero. (See the tendency of simulation results of
RSOM/RSTM in Tables IV-VI when Dt=DXDY , 60). This is a typical manifestation
of “inconsistency”. This is because when Dt=DXDY goes to zero, the system of
algebraic equations is no longer equivalent to the original partial differential equations
at each grid point (See Fletcher, 1991 for a complete definition of consistency). In RSOM
and RSTM the inconsistency causes the model to become a pure-conduction case when
Dt=DXDY is too small. On the other hand, in VVM, the inconsistency is expressed by
the simulation results blowing up (Tables IV-VI). Therefore, to avoid divergence or
convergence to an unreasonable result, the time step must be chosen carefully so that it
is not too small and it matches the grid size. For instance, keeping Dt=DXDY larger
than 80 in the current simulation will guarantee convergent results (Tables IV-VI). The
inconsistency of the discretized TTM model is an interesting phenomenon and needs
thorough theoretical analysis to obtain more insight.

Note that clearly a too large value of Dt=DXDY will cause coarse results due to
large time steps. The results showed in Tables IV-VI and Figures 8-11 indicate that the
accuracy will be best when Dt=DXDY is chosen between 102 , 103:

Cost-effective concerns. From Tables IV-VI we find as grid numbers increase, the
chance of divergence decrease although the number of total iterations significantly
increases. Larger grid numbers only slightly change the simulation results. On the

Figure 10.
Comparison of the

locations of the melting
fronts at t ¼ 39:9 (RSOM

with different grid sizes
and time steps)
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other hand, we also find that with a fixed grid number the difference among the results
obtained by using different time-steps from 1 to 0.01 (if the results converged
reasonably) is not significant although the running time increases considerably when
using a small time-step. More important and convincible results are shown in
Figures 10 and 11 where the results of different combinations of grid sizes and time
steps are compared. We find that although the results of grids: 20 £ 20; Dt ¼ 0:5 case
is not good, both the results of the 40 £ 40; Dt ¼ 0:1 case and 80 £ 80; Dt ¼ 0:05 case
are acceptably accurate. However, since the simulation time of the 80 £ 80; Dt ¼ 0:05
case is remarkably longer than that of the 40 £ 40; Dt ¼ 0:1; if the cost is a concern it is
better to choose the time-step length around 0.1 and the grid number of around 40 £ 40:

An additional numerical test was done based also on experimental results in Okada
(1984) in order to validate the above finding. All parameters and set up are the same as
in the former example except that in this case (referred to “Okada, 1984 case 2”)
Ra ¼ 6:95 £ 105; Ste ¼ 0:0959: Results are listed in Table VII, Figures 12 and 13,
where we see the results match our conclusion made above, i.e. in the zone where the
numerical model is consistent, RSOM and RSTM generate almost identical results;
VVM runs with less iterations but also less accuracy; the choice of RSOM/RSTM with
grid size 40 £ 40; Dt ¼ 0:1 is the best one balancing the cost and efficiency.

Figure 11.
Comparison of the
locations of the melting
fronts at t ¼ 78:68 (RSOM
with different grid sizes
and time steps)

RSOM grid
20 £ 20
Dt ¼ 0:5

RSOM grid
40 £ 40
Dt ¼ 0:1

RSOM grid
80 £ 80

Dt ¼ 0:05

RSTM grid
40 £ 40
Dt ¼ 0:1

VVM grid
40 £ 40
Dt ¼ 0:1

1l (percent) 47.561 50.565 49.777 50.565 48.812
Number of iterations 33,428 97,206 224,293 97,197 92,979

Table VII.
Simulation results of
Okada (1984) case 2
(stopped when t ¼ 30)
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5. Conclusions
Effects of solid velocity correction schemes on a TTM for convection controlled
solid-liquid phase-change problem are investigated in this paper. While the TTM is a
simple and accurate enough model for simulation and analysis of convection/diffusion
phase-change problems, the inconsistency of this model is exposed during our variable

Figure 12.
Comparison of the

locations of the melting
fronts at t ¼ 19:3 (grid
size: 40 £ 40; time step

Dt ¼ 0:1)

Figure 13.
Comparison of the

locations of the melting
fronts at t ¼ 19:3 (RSOM

with different grid sizes
and time steps)
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grid sizes/time step simulation tests. We conclude that in order to efficiently use the
discretized TTM model and obtain convergent and reasonable results, we must choose
a grid size with a suitable time step (which should not be too small). We discussed the
commonly used solid velocity correction schemes, SOM, STM and VVM, and then
validated ramped SOM (RSOM) and STM (RSTM) procedures in which we introduce a
“linear” mushy region to improve the simulation performance of the original SOM and
STM. The simulation results using RSOM, RSTM and VVM in TTM are compared
with experimental results, and from this we conclude that combined with TTM, RSOM
and RSTM present almost identical results which are more accurate than VVM. As
Voller et al. (1987) pointed out, though the ramped velocity correction schemes have
physical importance only for phase changes with existence of mushy regions,
mathematically they can also be used for isothermal phase-change simulations as a
choice of numerical discretization.
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